The Analysis of WC surfaces and Diamond Thin Films by Laser-Acoustic Surface Waves

Frank Papa
Crystallume
Engineered Diamond Products
3397 De La Cruz Boulevard
Santa Clara, CA 95054
Tel: +1 (408) 653-1700
e-mail: frank@crystallume.com

Chris Engdahl

Thomas Schuelke
Michael Becker
Fraunhofer USA
Center for Surface and Laser Processing
211 Fulton Street, Suite 101
Peoria, IL 61602, USA
Tel: +1 (309) 999-5887
e-mail: tschuelke@fraunhofer.org

The International Conference on Metallurgical Coatings and Thin Films
April 22nd – April 26th 2002, San Diego, California, USA
Presentation Outline

Diamond Coating
- Production flow
- Process and equipment
- Microstructure

Quality control by E-Modulus
- LAWave® equipment
- Measurement quantities

Results
- Overview LAWave® spectra
- Ground versus ground & etched
- Diamond coatings
Diamond Coating – Production Flow

Incoming Material
- Co content
- Roughness
- standard or micro grain

Pre-Treatment
- etching
- additional treatment

Coating Process
- standard diamond
- smooth diamond

QC

ICMCTF 2002, Session F3-2-3

Crystallume
Engineered Diamond Products
A Division of RobbJack Corporation

Fraunhofer USA
Center for Surface and Laser Processing
Diamond Coating – Equipment & Process
Diamond Coating – Micro vs. Standard Grain Substrate
Diamond Coating – Smooth vs. Standard Grain Film
E-Modulus as Sensitive Quantity to Control Quality

E-modulus for some bulk and coating materials

Highest modulus
diamond (E = 1147 GPa)

Lowest modulus
polymers

Coatings
Considerable variation depending on deposition parameters

→ Quality Control
Laser-Acoustics LAWave – Equipment
Laser-Acoustics LAWave® – Software Interface
Laser-Acoustics LAWave® – Characteristics

- Non-destructive measurement
- Fast measurement cycle
 → < 2 min
- Accurate measurement cycle
 → $\Delta c/c = 2 \times 10^{-4}$
- Easy-to-use equipment
 → handling, software
Presentation Outline

Diamond Coating
- Production flow
- Process and equipment
- Microstructure

Quality control by E-Modulus
- LAWave® equipment
- Measurement quantities

Results
- Overview LAWave® spectra
- Ground versus ground & etched
- Diamond coatings
Results – Roughness of Ground and Etched Material

ICMCTF 2002, Session F3-2-3

Fraunhofer USA
Center for Surface and Laser Processing
Results – Overview LAWave® Spectra

- Smooth diamond
- Std. diamond
- advanced
- ground
- etched

Phase velocity [m/s] vs. Frequency [MHz]
Results – Ground versus Ground & Etched Material (1)
Results – Ground versus Ground & Etched Material (2)

Substrate E-modulus (GPa)

- K68 standard 6%Co
- CQ22 micro 10%Co
- PL2 standard 6%Co
- K313 micro 6%Co
- HTi10 standard 6%Co
- Micro100 micro 10%Co
- H21 standard 6%Co

Fraunhofer USA
Center for Surface and Laser Processing
Results – Process Steps (1)

ICMCTF 2002, Session F3-2-3

E-Modulus (GPa)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Micro 10%Co</th>
<th>Micro 6%Co</th>
<th>Std 6%Co</th>
<th>Micro 10%Co</th>
<th>Micro 6%Co</th>
<th>Std 6%Co</th>
<th>Micro 10%Co</th>
<th>Micro 6%Co</th>
<th>Std 6%Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>ground</td>
<td></td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>etched</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>add. Treatm.</td>
<td></td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>std. diamond</td>
<td></td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>smooth</td>
<td></td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
</tr>
</tbody>
</table>

Fraunhofer USA
Center for Surface and Laser Processing

Crystallume
Engineered Diamond Products
Results – Process Steps (2)

- **Micro 10% Co**
- **Micro 6% Co**
- **Standard 6% Co**

<table>
<thead>
<tr>
<th>Process Step</th>
<th>E-Modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ground</td>
<td>550</td>
</tr>
<tr>
<td>etched</td>
<td>650</td>
</tr>
<tr>
<td>additional treatment</td>
<td>750</td>
</tr>
<tr>
<td>standard diamond</td>
<td>850</td>
</tr>
<tr>
<td>smooth diamond</td>
<td>950</td>
</tr>
</tbody>
</table>

Fraunhofer USA

Center for Surface and Laser Processing
Results – Example Process Variations

E-Modulus (GPa)

<table>
<thead>
<tr>
<th>Process</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std 6% Co Standard Etching</td>
<td></td>
</tr>
<tr>
<td>Std 6% Co Additional Treatment</td>
<td></td>
</tr>
<tr>
<td>Std 6% Co Standard Etching</td>
<td></td>
</tr>
<tr>
<td>Std 6% Co Additional Treatment</td>
<td></td>
</tr>
</tbody>
</table>

Fraunhofer USA Center for Surface and Laser Processing
Summary / Conclusions

- LAWave® as quality control and film development tool
 - Co% change from 5% ..10% very sensitively detected → can control incoming material
 - Effective E-modulus change due to etching (Co depletion) very sensitively detected → can control material prepared for coating
 - Effective E-modulus change due to different diamond coatings very sensitively detected → can control coating quality
 - Tool also proved successful to support film development

- Diamond coatings
 - Smooth diamond coating yields an effective E-modulus of \((1123 \pm 22)\) GPa
ICMCTF 2002, Session F3-2-3

Acknowledgements

- Mr. Mahmut Kagan Yaran (Fraunhofer USA)
- Dr. Dieter Schneider and Dr. Bernd Schultrich (Fraunhofer Institute for Materials and Beam Technology, Dresden, Germany)