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The thermal conductivity of diamond prepared by a chemical vapor deposition
(CVD) process is measured in the temperature range 4-400 K by a new steady-state
technique which overcomes the problem of radiative loss of heat from the sample.
The conductivity is high at room temperature (17 W/cmK, compared with ~22 for
single-crystal diamond) and increases on cooling. The data are fit over the entire tem-
perature range with a model which demonstrates that for 200 < T < 400K the

phonon scattering is dominated by intrinsic (umklapp) scattering rather than by
crystalline defects.

1. Introduction

In nonmetallic solids, thermal energy is generally carried by phonons and the
thermal conductivity is limited by the phonon mean free path (mfp) between scatter-
ing events. For high-purity single crystals, there is little scattering of phonons from
lattice defects or impurities, and the mfp is limited only by the sample boundaries
(below ~ 100 K) or by umklapp phonon-phonon scattering (above ~ 100 K). The lat-
ter becomes rapidly more important as the temperature (and density of phonons) in-
creases, resulting in a conductivity which decreases on warming. Single crystais of
diamond are an example of materials showing such behavior.” Diamond is
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unusual, though, in having the highest known conductivity above ~ 100 K. This is
due primarily to the stiffness of the lattice which produces a high acoustic velocity as
well as an extremely high Debye temperature (~ 2000 K). For diamond, room tem-
perature is therefore near the low-temperature limit where umklapp scattering is
very weak (large mfp, high conductivity).

Previous reports®™® of the temperature-dependent thermal conductivity of
polycrystalline CVD diamond films show a relatively low conductivity (3-5 times
lower than single-crystal diamond at 300 K) with a positive slope vs temperature in
the range 10-300 K, indicating that the mfp is dominated by extrinsic scattering en-
tities such as impurities, lattice defects, and grain boundaries.

The present study of polycrystalline CVD diamond reveals a considerably higher
conductivity, with a negative slope between 200 and 400 K which indicates that ex-
trinsic scattering is weak enough to allow umklapp scattering to dominate the mip.

2. Experiment

The sample is prepared in a specially designed 2.45 GHz microwave plasma-
enhanced CVD system. Deposition is performed on silicon wafers under conditions
typical of conventional microwave CVD. The sample is 0.035 x 1.5 x 1.5cm’ and
is optically transparent. The Raman spectrum exhibits a strong peak at 1332 cm™!
characteristic of diamond with no apparent features characteristic of graphitic bon-
ding. The full width at half maximum of the peak is 4 cm™".

The conductivity is measured with a new steady-state technique which allows
one to detect and correct for any heat that is exchanged between the sample and its
surroundings by thermal radiation. Radiative loss is by far the most common source
of error in thermal conductivity measurements at room temperature and above. The
new technique is a simple modification of the standard steady-state heated-bar
technique in which a bar of material is thermally grounded at one end and heated at

the other with power P. The conductivity x is determined by measuring the tempera-
ture gradient d7/dx:

Kk = P[(A-dT/dx), (0]

where A is the cross-sectional area of the sample, assumed constant in the region of
the 4 T measurement.

Implicit in the definition (Eq. 1) is the assumption that all of the power is con-
ducted through the sample. If, however, the surfaces of the sample (with total area
2L(w + t)) lose energy at a rate P4, an effective conductance k.4 between the sam-
ple and its surroundings at temperature T, can be defined as

Prs 20e(w + ()L(Ts — T3)
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where o is the Stefan-Boltzmann constant, ¢ is the emissivity (0 < £= 1), and the
average temperature is T,, = T, + (4 T).. Expanding T3, in a power series, we find
kea = 8aeL(w + t)T). This effective conductance is to be compared with kees =
xwt/ L through the sample, so that the ratio of the two channels for heat flow is
R=kuk _Saa' W—i-rL,T) 3
rad cond — X w[ Qe ( )

Radiation loss ciearly is most severe for long, thin plate-like samples with low con-
ductivity at high temperatures. Even for a good conductor such as diamond, radia-
tion can be important. For example, fore =1, w=lcm, ¢t = 300um, L = 2cm,
k= 10 W/cmK, and T, =300 K, Eq. (3) yields R = 0.17; that is, a 17% error is
made if radiation loss is not taken into account. The error can easily be far worse if
the geometry and/or conductivity are less favorable. Since it is difficult to calculate
R accurately because of uncertainties in &, we use an experimental arrangement
which allows us to detect any significant radiation loss while measuring the conduc-
tivity. The new procedure employs a second heater (H2 in Fig. 1(a)) located on the
sample but close to thermal ground. With power dissipated only in H2, the tempera-
ture profile is flat in the absence of radiation but is described by a catenary if radia-
tion loss takes place from all points on the surface. This is illustrated schematically
in Fig. 1(b). The radiation loss with H2 powered can be modeled” to correct for
radiation loss when H1 is powered. For the sample measured here, however, the
droop in temperature with H2 powered is at worst (at 400 K) only ~ 10% of the tem-
perature rise along the sample with H1 powered. With this small correction, the
droop may simply be added to the measured slope with H1 powered. At room tem-
perature and below, radiative loss is negligible in this sample, as shown by the
flatness of the temperature profile with H2 powered (Fig. 2). Without the use of H2,
though, even the order of magnitude of the radiation loss is difficult to determine.

The heaters are deposited directly onto the sample by evaporation (~ 500 A of
Au on ~2000 A of Cr, r = 200 Q). Silver-filled epoxy is used to attach the heater
leads (0.0025 cm diam. goid) as well as the thermocouple junctions (Chromel-Con-
stantan, 0.0025 cm diam.). A line of 3-4 thermocouples, Fig. 1(a), may be used for
accurate determination of the thermal gradient; a differential thermocouple is more
suitable for high-conductance samples where the thermal rise along the sample with
H1 powered is much smaller than that at the sample-to-ground joint. For the pre-
sent sample, depending on the temperature range, the latter can be 10°C for only a
1°C rise along the sample. With the sample in vacuum, and with good temperature
control of the thermal ground, a resolution of 0.001°C can be obtained in the vicini-
ty of room temperature. The temperature resolution decreases by a factor of ~10
on cooling to liquid helium temperatures, due to the decrease in the thermopower.

The greatest uncertainty arises in the measurement of the sample thickness
because of sample roughness. We estimate an overall uncertainty in the conductivity

of ~5%.
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Fig. 1. a) Schematic diagram of a sample mounted for the two-heater heated-bar technique of measur-
ing the thermal conductivity and detecting the presence of radiation loss. The sample is equipped with
two thin-film heaters, H1 and H2, and a number of thermocouples. b) Temperature distribution along
sample expected for a given power applied to either H1 or H2, for two cases: zero radiation loss from sur-
face of sample (solid straight lines) and severe radiation loss (dashed curves).

3. Results and Analysis

The data are shown in Fig. 3. The conductivity at 300K is 17 = 1 W/cmK and
the slope is clearly negative for 200 < T < 400 K, with d(In x)/d(in T)= -0.73.
At the highest temperature (~ 400 K), the conductivity of the film approaches that
of high-quality (type I1a) bulk single crystals,®” also shown in Fig. 3 and in greater
detail in Fig. 4. Below 200 K, the conductivity drops off rapidly with a broad dip

centered at ~30 K, while a comparable dip is observed in the single-crystal data at
~10K.
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Fig. 2. Thermocouple data at room temperature with power dissipated in H1 and (slightly more) in H2.
The flatness of the temperature profile for H2 powered shows that radiation loss is negligible for this sam-
ple at this temperature. The slope determined with power in H1 is used with the power, thickness, and
width to obtain the thermal conductivity according to Eq. 1.

To understand the magnitude and temperature dependence, one may model the
conductivity within the Debye phonon approximation™® with various contributions
to the phonon scattering which are adjusted to fit the data. The conductivity can be
expressed as an integral over temperature 7 and phonon frequency w:

ks ﬁ o . j" Tr(x)x‘e” dx
Zu'v[h]r o (e*=1P0" )

where v is an appropriately averaged velocity of sound,™ kg and A are Boltzmann’s
and Planck’s constants, respectively, @ is the Debye temperature,” x=hw/ks T,
and t7"(x) is the scattering rate at temperature T for a phonon of frequency w. If
one makes the usual assumption that scattering rates are independent,™ the rates
;' are additive. We have used the following contributions to 7~":

1. At the highest temperature, phonon-phonon umklapp scattering must be taken
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Fig. 3. Thermal conductivity of CVD diamond (circles) and single-crystal type-lla natural diamond
(crosses, Ref. 5). The solid lines are the fits calculated from Eqs. 4-9 with the parameters listed in Table
1. The dashed lines indicate 7 dependence.

into account. High-temperature measurements in the highest purity single crystals
available are usually used as an approximation of the ideal conductivity. We have
‘used data on type II, crystals, including very recent work™ above 500 K, and we find
better agreement with the form 7' ~ w?T exp (—1/7T) than with previously used

expressions,” ' such as w?T? exp (—=1/T) or @*T? exp (— 1/ 7). Specifically, we
use

' = Aux*T? exp (—B,/T). oy

2. Point-defect scattering from isolated atoms of different mass, either isotopes or
different elements, gives rise to a Rayleigh w* term:

4 ' = A x'T". (6)

3. For an extended defect such as the strain field around a vacancy, one also ex-
pects Rayleigh scattering for wavelengths that are large compared to the defect. At
high frequencies, interference effects become important and eventually the cross sec-
tion becomes independent of frequency, i.e., the geometrical limit. For a spherical
object of diameter D, the Rayleigh scattering varies as w* and the crossover occurs

at w. = v/D. We use a simplified version"'? of the theoretical models for such scat-
tering:
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TRy = ApeoX*T* w < w. @
= Arowe(t/ks)* > o, '

4. Boundary scattering is important at the lowest temperatures where other scatter-
ing mechanisms are generally weak. Assuming diffuse scattering at the surface of
the sample or at the internal surfaces between grains, one typically uses'*

%! =v/ad, (8)

where d is the sample or grain size. The factor a=1.12 for a square sample/grain.
5. At the highest frequency and temperatures, some of the above scattering
mechanisms lead to unphysically small mean free paths. To avoid this, we calculate
the sum of those scattering rates Zt;”' and then require an upper limit by calculating

x)=rlv+ (7YY, (9)

where r is 2 minimum mean free path, typically an interatomic dimension.™®

Many other scattering mechanisms have been used for different materials. /49
Our approach here is to use the smallest number of terms necessary to fit the data at
hand. Our primary goal is to test the importance of umklapp scattering in this CVD
diamond, i.e., whether all other scattering is weak enough that intrinsic scattering is
observable.

The single-crystal data in Fig. 4 is used first to optimize the umklapp term.
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Fig. 4. Expanded view of the high-temperature portion of Fig. 3. Also shown are data on type-ila dia-
mond from Ref. 6 (short-dashed line) and Ref. 7 (long-dashed line).



162

Because of the good agreement between the data of Refs. 5 and 6 in the region of
overlap (200-450 K), we have concentrated the umklapp fit on the temperature inter-
val 150-450 K. The higher-temperature data (T > 500 K) lie parallel to the calcula-
tion, which suggests that the latter data come from a somewhat more perfect sam-
ple. We leave unanswered the question of the ultimate conductivity of a defect-free
diamond sample. Our primary concern here is the temperature dependence, which
can be reproduced very well by Eq. 5, a form which has aiso been used successfully
for alkali halides.!"®!"

The parameters used in the fits are listed in Table 1. The parameters are fairly in-
dependent of each other because of the tendency for each one to be important in
only a limited range of temperature. The umklapp parameters A, and B, are
different from those used previously, not only because of the different temperature
dependence in Eq. § but also because we are fitting to data over a much wider tem-
perature range. A, and B, are determined from the single-crystal data and then used
without change for the CVD diamond data. The Rayleigh scattering is large enough
to account for isotope scattering (a mass defect formula'® for natural-abundance
BC predicts Az = 0.0044 s™' K™, compared to our two values of 0.025 and 0.015),
plus some other source of point defects. The cut-off Rayleigh scattering due to ex-
tended defects is considerably stronger but approximately what one would expect
for scattering by the strain field around vacancies. Either the 10 A or 30 A diameter
D of the defect is a reasonable size for the strain field around a vacancy. An alter-
nate scattering mechanism that fits the data equally well in the region of the dip is
resonance scattering by localized phonons around a defect. In this resonant scatter-
ing picture, the dominant phonons near the dip (10K in single crystals, 30K in
CVD) have energies of ~4 kT=4-10 meV. These are typical of the energies of local-
ized phonon modes associated with vacancies."” Demonstrating conclusively which
model is more appropriate would require more exhaustive sampling of specimens
with different concentrations of known defects, which is beyond the scope of the pre-
sent work. The minimum mean free path r = 3 A makes little difference in the

Table |

Parameters used in the fit to data in Figs. J and 4. The parameters are defined in Eqgs. 4-9. A double
period indicates no change.

.

Single Crystal CvD
: o (K) 2030 -
v (cm/s) 1.32 x 10* —_
A G7EY) 640 -
B, (K) 470 -
Apy(s™'K™Y 0.025 0.015
Ape (8™ K™ 10 15
D (em) 3x 1077 1 x 10”7
d (em) 0.2 0.0035

r(cm) 3x 107" -
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calculated conductivity below 500 K, and at 1000 K results in an increase of only
~10%.

The largest difference between the two samples lies, of course, in the frequency-
independent scattering rate. The values of 2 mm and 35 um, respectively, corres-
pond quite well to the size of the bulk single crystal and the average grain size of the
polycrystal. The latter is difficult to estimate because it varies as a function of
distance from the starting surface, but examination of the top surface shows a grain
size of ~ 50 um.

The main conclusion is that the data for both materials are fit well with a small
set of reasonable parameters and that in both cases the scattering from defects or

boundaries is small enough to reveal the intrinsic umklapp scattering with its unique
negative siope.

4.Conclusions

High-quality CVD diamond has been found to have a thermal conductivity at
room temperature that is only 25% less than single-crystal type-Ila diamond. Mea-
surements over two orders of magnitude in temperature allow us to model the con-
ductivity in detail. While some of the scattering mechanisms are not unambiguously
determined without more exhaustive work, it is clear that, in the temperature range
200-400 K, the scattering of phonons by defects is small enough that intrinsic
(umklapp) scattering dominates the conductivity.
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